HEATH-JARROW-MORTON FRAMEWORK

VLADIMIR PITERBARG

1. SETUP

We will assume that all our random variables' and stochastic
processes live on a probability space (2, F,P) with a sample
space (), sigma-algebra F and probability measure P. We also
assume that there exists a filtration

{Fi, 0<t < oo}
such that
FsCF CF
for
0<s<t<o0.

We will be considering only those stochastic processes that have con-
tinuous trajectories P-almost surely. In addition we will only be deal-
ing with F;-adapted processes. Note that a process with continuous
trajectories is predictable (or, as some call it, previsible) if it is
adapted.

2. PARADIGM

The concept of a replicating strategy is an important one. Let us
recall its definition. Suppose we have an economy with two primary
instruments. Their prices at time ¢ will be denoted by Iy and J;. A
strategy is a pair of (predictable) processes (¢,,v,), where we inter-
pret ¢, as the amount of instrument / we hold at time ¢, and 1, as
the amount of instrument J we hold at time ¢. Then the value of the
portfolio at time ¢ is equal to

IL, = ¢ dy + 4 ;.
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The strategy is called self-financing if the change in the value of the
portfolio comes from changes in the prices of the instruments only,

dIl, = ¢, dl, + 1, d.J,.

It is called replicating for a claim with a (random) payoff X at time T’
if
Iy =X

P-almost surely.

We will price derivative securities by constructing replicating strate-
gies. We will use the fact that if the value of a replicating strategy (by
definition self-financing) at option’s maturity is equal to the payoff of
the option, then the no-arbitrage value of the option today is equal to
the initial investment required to put the replicating strategy in place.
The fact that we can price derivative securities this way follows from
the No I'ree Lunch condition

NFL: If two strategies have the same payoffs in the future, they
must have the same value today.

From now on, we denote the value at time ¢ of the instrument that
pays X at some future time ¢ by

T (X) .

In the discussion above, it follows from NFT that 7, (X) at time ¢ must
be equal to II,.

If we have two traded instruments, how can we replicate one with
the other? The following theorem provides a partial answer, see [KS,

p.182].

Theorem 2.1 (Martingale Representation Theorem). Let the filtration
{F:} be generated by a process Wy which is a Brownian motion under

some measure Q on (2, F). Let the process Ny be an Fi-adapled con-

tinuous square-integrable martingale under the same measure. Then

there exists a predictable process vy such that

T
EQ/ v2dt < oo
0
and
t
Nt:No—l—/ ve dWs.
0

Moreover, if

vy >0 Q-a.s.
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and My 1s another Fi-adapted conlinuous square-inlegrable martingale
(under Q) then there exists another predictable process ¢, such that

t
M, = M0+/ ¢, dN..
0

We can interpret the theorem as that we can “replicate” one mar-
tingale M by “holding” the amount of ¢, of martingale N at time ¢.
We will make use of this theorem by finding a measure under which
the values of traded instruments are martingales, and then replicating
them using the theorem.

3. INTEREST RATE MARKET

The price at time ¢ of a zero bond that pays $1 at time 7" is denoted
by

Pt,T).

The instantaneous forward rate at time ¢ for forward period [T',T + 0]
is denoted by

f@rT.

The short rate at time ¢ is denoted by

() = F(t.1).
Recall that by definition

P{t,T) = exp <—/tTf(t,u) du>.

We can go back and forth between bond prices and instantaneous
forward rates. If we impose some evolution on forward rates, that
immediately “locks in” the evolution of bond prices, and vice versa.

Note that for bonds P (¢,T) and forward rates f (¢,7) the second
argument (capital T") works as an “index” that differentiates various
traded instruments. The first index (little ) is a time index. For
example, if T is fixed and ¢ changes, we get a stochastic process of
bond values {P (t, T)}tT:o (generally we assume that little ¢ cannot go
beyond capital T as it would not make much economic sense). We
assume that for each T, this process is Fi-adapted and continuous.
Then the same for the stochastic process {f (¢, T)}tho-
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4. WHAT IS NO-ARBITRAGE?

Suppose we try to create an interest-rate model by imposing some
dynamics on random processes for bond process P (¢,T). Obviously we
would have to do that for each maturity 7. How do we decide whether
our model makes sense? Consider for simplicity one-factor model (only
one source of noise). We will show later that in this situation a bond
with some maturity S can be dynamically replicated using another
bond with maturity 7" as long as 7" > S. So a bond with maturity S
will have two prices, one given by our original model specification (that
at time t = 0 is equal to the market price of a bond P (0, 5)), and the
other price obtained from replicating strategy.

The only way for the model to make sense (be a “no-
arbitrage” model) is to have those two prices coincide.

Heath-Jarrow-Morton approach allows us to construct models that
prevent this kind of “model arbitrage”, where the same instrument can
have two different prices depending on what angle you look at them
from.

5. SINGLE-FACTOR HJM

5.1. Assumptions. Let us start by fixing a Brownian motion Wy un-
der the (original) measure P, and by assuming that the filtration {F;}
is generated by W. We further assume a very general form for forward
rates,

(5.1)
F@,T) :f(O,T)—I—/tU(s,T) dWS—I—/toz(s,T) ds, 0<t<T.

Here o (s,T) and « (s,T) are very general processes, that are assumed
to be (some technical conditions)

e adapted and continuous processes of s;
e square-integrable in s;
e square-integrable in both arguments.

Specifying forward rates’ evolution by (5.1) completely fixes up the
model. We derive the processes for other quantities below.
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5.2. Bond prices. We have
(5.2)

P{t,T) = exp <—/tTf(t,u) du>

= exp <—/tT lf(O,u)—l—/OtU(s,u) dWS—I—/Otoz(s,u) ds] du>
~ exp <_/ <[Tg<s,u> du> aw,
—/tTf(O,u) du—/ot/tToz(s,u) duds>.

5.3. Money market. A money market B; is defined as follows
dBt :T(t) Btdt, BO = 1,

which can also be written as

B, = exp </0t7~<s> ).

Money market at time ¢ is the value of one dollar invested in time zero
and rolled up every day at then-prevailing short rate.

Recall that
r(t) = f(t1t),
so that (from (5.1))

T(u):f(O,u)—l—/Ouo(s,u) dW5+/0uoz(s,u) ds.

Then
(5.3)

B: = exp </0t [f(O,u)—l—/Ouo(s,u) dWS—I—/Ouoz(s,u) ds] du>
= exp </0t </:J(s,u) du> dW5+/0tf(0,u) du—l—/ot/:oz(s,u) duds>

5.4. Discounted bonds. Let us denote
Z(t,T)=B,'P(,T).

What we have here is that Z (t,T) is the value in today’s (¢ = 0) dollars
of a bond at time t. The reason to consider discounted values is that
we would like to be able to compare values of instruments at different
times, and they are directly compatible only if expressed in the same
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units, in this case being “time 0 dollars”. Combining (5.2) and (5.3)
we get

Z(t,T) = B 'P(t,T)

o
Sty S
L)

[ 1o [ [

_ Xp< / </ (s, )du+/ 0(3,u)du>dWs>
e
[ [ | [

([
xXp< /fOudu>
[ founae

_ Xp</ 5 (s,T) dW,

[ [ o)

where

E(S,T):—/STJ(S,U) du.
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In particular (Ito’s lemma)
(54) dZt,T)=Z(t,T) <2 (t,T) dW, — </5Ta (t,u) du> dt>
+Z(t,T) <% ¥*(t,7T) dt> :

5.5. Replicating an arbitrary payoff: the steps. As was men-
tioned before, we would like to construct a strategy for replicating an
S-maturity bond with a strategy involving a T-maturity bond. In fact,
we can do one better. We can show that we can replicate any pay-
off using only T-maturity bond (and money-market account). Assume
that X is a payoff that we want to replicate. We assume that it is an
Fs-measurable random variable where S < T (if you recall the defini-
tion of an Fg-measurable random variable, it just means that the value
X will be “kmown” come time S).

Recall a theorem presented earlier about replicating one martingale
with another. If we could make all relevant processes martingales, we
would use that theorem to construct a replicating strategy. So our plan
is as follows,

1. Find a measure Q under which 7 (¢,T) is a martingale;
2. Find a Q-martingale V; such that at the final time S the martin-
gale V 1s equal to the discounted value of the payoff, Vs = Bng ;

3. Find a predicted process ¢, such that V; = V4 + fot ¢, dZ (t,T);
4. Prove that ¢, is (part of ) a replicating strategy.

Let us do these steps.

5.5.1. Step 1. Rearranging (5.4) we get,
(5.5)

dz (t,T) = 7 (t,T) <2 (t,T) dW, + <% »? (t,T)—/STa(t,u) du> dt>
— LTS (LT) <th+ <%E(t,T)—%/tToz(t,u) du> dt>.

Changes of measure are the same as changes of drift for the Brownian
motion (Girsanov’s theorem). The process Z (¢, T) will be a martingale
if an SDE for Z does not have the “dt” part. So if we define

(5.6) v, = %E(t,T)—%/t a(t,u) du,

dW, = dW,+~,dt,
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and define measure Q by the requirement that W; be a Brownian mo-
tion under Q, we would have

dzZ (t,T) = Z (t,T) = (t,T) dW,,

which defines a martingale.

5.5.2. Step 2. The process
V,=E° (Bs'X| 7)

is automatically a martingale because of a tower rule. If s < ¢ < S
then

E° (V| 7)) = E?(E°(Bs'X|F7)|F)
= E?(B;'X|F)
= V;
Clearly
Vs =E% (By'X| Fs).

Since X is Fg-measurable, and so is Bg', we have from one of the
properties of conditional expectation that

Vs = E% (Bg'X|Fs) = Bg' X
as required.

5.5.3. Step 3. By Martingale Representation Theorem there exists a
predictable process ¢, such that

dVy = ¢,dZ (t,T),
so that

t
Vi = Yo+ [ 6,42(7)
0
t
= EQ(lex\f0)+/ ¢, dZ (s,T).
0

5.5.4. Step 4. Define
Yy = Ve — ¢tZ(t7T)‘

Then the strategy requires holding at time ¢
e ¢, units of bond P (¢,T); and

e 1/, units of the money market account B;.
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At time t the value of the portfolio R; is equal to

(5.7) R = ¢ (. T)+v,Be
= ¢ (t,T) + (Vi — L (t,T)) By
= ¢tP (t,T) + (W - ¢tB;1P (t,T)) B,
= P, T)+ VB — ¢ P (¢, T)

= ViB,.
In particular, at time S, Vg = Bg'X (see Step 3) so that
RS = VsBS = BnglX = X

At the expiry time S we exactly replicate the payoff X.
We need to check if the strategy is self-financing. We have (B; has
no stochastic term, we use that a few times below)

(5.8)  dR, = B.dV,+V,dB,
= By, dZ (t,T) +V,dB,

= |¢d (BtZ (t, T)) — ¢4 (t, T) dBy| + V,dB,
= ¢ dP (t,T) + (W — L (t,T)) dB;

= ¢ dP (t,T) + (W — L (t,T)) dB;

= ¢, dP (t,T)+ ¢, dB;.

Therefore, it is indeed self-financing.

5.6. Replicating an arbitrary payoff: results. Let us recap. We
have constructed a self-financing (see (5.8)), replicating (see (5.7)) port-
folio consisting of a T-maturity bond P (¢,7T) and a market money ac-
count B; for an arbitrary payoff X. Therefore, the value of that payoff
today (t = 0) is just the value of this strategy today, so we have

70 (X) = Ro = VoBo = Vo = B? (Bg' X| Fo) = E? (B4 'X) .
Likewise, the value of it at some intermediate time ¢ is equal to
(5.9) 7 (X) =R, = VB, = BE® (Bs'X| F) .

The importance of these formulas cannot be overemphasized. They
show that the value of any derivative only depends on the dynamics of
bonds in the measure Q, and not the original measure P. Measure Q
has a special name, a risk-neutral measure.
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5.7. Replicating one bond with another. So let us go back to the
problem of replicating a bond P (¢, S) using P (¢,7) and money market
Bi. The bond P (t,5) is just a “derivative security” with a (constant)
payofl of $1 at time S, X =1 paid at S. By (5.9) we must have

(5.10) P(t,S) = B{E® (Bg'| R) .
Slight rewrite yields
B;'P(t,5)=E® (Bg'P(S,9)|F)
so (5.10) is equivalent to the requirement that
Z(t,8)=B;'P(t,S)

be a martingale under the same measure Q!

Of course we have from (5.5) and (5.6)

Az (t,8) = Z(t,5)2(t,S) ldWH— <;E(t,5)— 2(1,5) /ts (t, u) du> dt]
= Z(t,5)%(t,S) [dVNVt— <%E(t,T)— E(;T) /tToz(t,u) du> dt

n <%z(t,s)_ 2(1,5) /tsoz(t,u) du> dt}.

The only way for 7 (¢,5) to be a martingale is to have the “dt” term
absent. That requires

%E(t,T)— E<;T>/t o (t,u) du:%E(t,S)— 2(1,5)[ o (t,u) du.

This should hold for all 7" and S. Therefore, we must have (v, is
independent of T)

L@ ! /T (t,u) d
. — al(t,u) du =
2 ) E(t7T) . I /Yt7

so that

T
1
/ a(t,u) du = EEQ(t,T)—E(t,T)'yt.
¢

Differentiating with respect to T" we get
ox (t,T) 0% (t,T)
1, 1) =XT)——— — V.

Oé( ’ ) ( ’ ) 8T Vi BT

Since
0% (t,T)

oT =0 (t7T> )
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we finally have
(511> Oé(t,T) = _E(tuT)O_(tuT) +7to_ (t7T>

Recall that for a Black-Scholes model, the dynamics of stock under
measure P was arbitrary. One could use a geometric Brownian motion
with an arbitrary drift, or almost any other Ito process. Here we have
quite a different situation — for a model to be no-arbitrage, some re-
strictions on drift (in the real-world measure P!) have to be imposed.
Otherwise, arbitrage between bonds is possible. Yuri will show that his

statistical model does not satisfy (5.11) and then modify it slightly so
that the condition (5.11) is fullfilled.

6. MODEL PROPERTIES UNDER RISK-NEUTRAL MEASURE

We have shown that for any model that satisfies (5.11) we can con-
struct a measure Q with a rather remarkable property: for any traded
asset A; its discounted value is a martingale under measure Q,

B 'A 2 e Jor(s) 4 A, is a Q-martingale.

This of course holds true for all bonds as well. Now we can forget about
the original measure P, and value all instruments by taking expected
values (that are just integrals really) under measure Q just like in (5.9).

Let us use this very important fact to derive the equations for bond
prices and forward rates. We have under Q,

dZ (t,T) = Z (t,T)S(t,T) dW,.
Also
dP(t,T) = d(B;Z(t,T))
= Z(t,T)dB; + B,dZ (t,T)
= r(t)Z(t,T)Bdt + B, Z (¢, T)%(t,T) dW,
= r()P(,T)dt+PL,T)S(L,T) dW,.

So all bonds (in fact, all traded instruments) have the same rate of
return 7 (¢) under Q (this is why it is called risk-neutral measure).
Recall that we have for the forward rates

f,T) = —a%logp(t,T) ,
and (under Q)

P(t,T) = P(0,T)exp </0t lr(s) - %22 (s,T)} ds+/0t2(s,T) dm) :
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Thus

log P (t,T) zlogP(O,T)+/0t lr(s)— ;22 (s,T)} ds+/0t2(s,T) AW,

and
0 0
a—TlogP(t,T) = a—TlogP(O,T)
d ! 1, ¢ -
+8_T </0 [7" (s) — 52 (s,T)] ds—l—/o X(s,T) dWS>
0
= 8_TlOgP(O’T)
T 170 o, ) .
Since
iE(s T)=—0o(s,T)
8T ’ - ’
we get

8 8 t t ~
a—TlogP(t,T) = a—TlogP(O,T) —I—/O (s, T)o (s,T) ds—/o o (s, T) dWs.
Hence

0

In differential form
(6.1) df (t,T) = =X (t,T) o (t,T) dt + o (t,T) dW,.
Note that the drift of forward rates (under Q) is equal to

(6.2) -2, T)o(t,T)=0(t,T) /TU (t,7) dr

and is completely determined by volatility o (-,). Any model that sat-
isfies (6.1) and (6.2) is called a one-factor HJIM model.
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7. MULTI-FACTOR HIJM

7.1. Motivation. In the model we just constructed, all forward rates
are instantaneously perfectly correlated. This is not very realistic — a
move in 30y forward rate cannot usually be completely predicted from
a move in an overnight rate. While one-factor models have their place
in the arsenal of a Quant, multi-factor models are needed for pricing
more complex instruments. For example, if you consider an option on
a spread between 3m Libor rate and 10y swap rate, a one-factor model
will severely underprice it. By “multi-factor” models we understand
models that have more than one Brownian motion as stochastic drivers.

7.2. Construction. To construct a multi-factor HIM we can jump
through all the same hoops as we just did for a one-factor HJM. Practi-
tioners however, rarely bother to do so more than once in their lifetime.
They use a shortcut which we now proceed to share with you.

Recall the Fundamental Theorem of Arbitrage Pricing (see [SC]),

Absence of arbitrage is equivalent to the existence of a
risk-neutral measure. Under risk-neutral measure, all
traded assets must have the same rate of return.

Recall that the money-market account is governed by the equation
dBt =T (t) Bt dt.

This equation is valid under any measure equivalent to P, because there
are now stochastic terms. Hence, a money-market account has a rate
of return 7 (+) under the risk-neutral measure (call it Q again), whose
existence is guaranteed by the Fundamental Theorem.

Hence, under Q, all bonds must satisfy

dP(t,T) =7 () P(t,T) dt+ P, T) |y (t,T) dW}r + -+ Sy (¢, T) dW) |

where (th, N ) is an N-dimensional Brownian motion (with in-

dependent components). Solving the equation we get

Pt,T) = P(O,T)exp</0t [r(s)—%(E%(S,T)—I—---—I—E]QV(S,T))] ds

t t
+/ ¥ (¢, T) de+---+/ Yy (t,T) thN>.
0 0
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Thus we have for forward rates (repeating previous arguments)

0 0
8TlogP(t T) = 8TlogP(O T)

+/ [_%8% (Z (s, 1) +---+3% (s,T))] ds

0
[ () i [ on) air
0
Define
(7.1) Jn(s,T):—a%En(s,T), n=1...,N.
Then
(7.2)
0
f@T) = —a—logP(t,T)
=f0,17)— [ Ei(s,T)o1(s,T)+--+Xn(s,T)on(s,T)] ds

0
t t
+/ o1 (s,T) de+---+/ o1 (s, T) dW}.
0 0

This is it! A multi-factor ILJM model is any model that satisfies (7.2)
and (7.1). It is automatically a no-arbitrage model by the Fundamental
Theorem. We took much less time (and space) to construct it using
the shortcut.

Naturally, there was some value in starting in real-world measure P
and then making our way into risk-neutral measure Q. The circuitous
way we undertook in the early chapters for one-factor model gave us

e A constructive way of finding the risk-neutral measure;
e A connection between real and risk-neutral worlds;

e An understanding of where it came from; and

e An intimate connection between replication and pricing,.

But if you have done it once, there is rarely a reason to do it for the
second time.

7.3. Pricing. Well, we are not quite finished with the multi-factor
model yet. We still need a formula for valuing an arbitrary traded
asset.

If A; is the price at time t of some traded asset £, it must satisfy the

SDE
dA; = r (t) Ay dt + stochastic terms,
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where
stochastic terms = a; (t) AW} + - + ay () WY

for some stochastic processes {a, (t)}. In particular, the discounted
value B, ' A, satisfies

d (B '4,) = AdB;'+ B 'dA,
= —r(t)AB; dt + B, ' [r (t) Ay dt + stochastic terms]
= B, ! x [stochastic terms]
so that
B, '4, is a Q-martingale.
In particular, if
As =X
is an Fg-measurable payoff, then
B'm (X) = B 'A
— B (544 7)
E (Bg'X|F),
so that
(7.3) m (X) = BE? (Bg'X| F)

Not surprisingly, the valuation formula (7.3) is the same as (5.9) for
one-factor case.

In fact, specifying some measure Q, a law for the “numeraire”, the
money market process By, and the formula (7.3) is (almost) all that is
really needed to construct any no-arbitrage interest-rate model. This
approach covers a wider range of models than HJIM framework does.
In particular, models with jumps are also included, as are those in
which instanteneous forward rates do not exist. It is a different story
alltogether, but if you are interested, start with [FH] and [KH].
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